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The equivalence of the DLA and a hydrodynamic model 

Zbigniew Koza 
Institute of  Theoretical Physics, University of Wroclaw, d. Cybulskiego 36, PL-50-205 
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Abstract. We prove that the growth process governed by the diffusion-limited aggregation 
(nm) algorithm as we!! a s h y  some ofits natura! ertensions i s  isomorphous to the process 
afpushingan incompressible Newtonian fluid by an inviscid fluid through aporous medium 
in the chamber-tube (CT) model, provided that the parameters of the CT model are properly 
chosen. In this way we give U direct quantitative relation between hydrodynamics in random 
(porous) media and the fractal theory of stochastic oLA-like aggregates. On the other hand, 
this work presents an example of  two equivalent dynamical systems, one of them with 
stochastic dynamics applied to a deterministic medium and the other with deterministic 
dynamics applied to a random medium. 

1. Introduction 

In the past few years one can observe a growing effort to understand physical properties 
of stochastic aggregates, i.e. the structures with stochastic rules of growth. Though this 
problem eiiciis interest from many appiied sciences and technoiogies, its iheory is siiii 
incomplete and in fact even for many well-defined mathematical models it is confined 
mainly to hypotheses based on numerical simulations. One of the reasons is that this 
problem belongs to non-equilibrium physics. On the other hand, it has challenged 
many mathematicians and physicists ever since it was realized that Mandelbrot’s 
concepts of fractal behaviour might be used to solve it. In this paper we rigorously 
connect two apparently different types of stochastic growth: diffusion-limited aggrega- 
tion (DLA) and a two-phase flow through a porous medium (the chamber-tube (CT) 

model). 
The DLA (Witten and Sander 1981, 1983) is a well known lattice model with the 

following recursive rules of growth: 
( i )  Initially a seed particle is placed at  the origin of the lattice, forming a cluster 

which occupies one iattice site. 
(ii) Given a cluster occupying n lattice sites, a cluster consisting of n + 1 particles 

is obtained by launching a particle from ‘far away’ and letting it walk at random until 
it arrives at any of the sites adjacent to the cluster (the perimeter sites)-then it is 
stopped and attached to the cluster. 

Tang (1985) modified the DLA algorithm by assuming that at each perimeter site j 
there is a ‘counter’ c, indicating how many times this site has been already visited by 
a random walker. Only if c, = M ,  M being a previously chosen parameter, is site j 
incorporated into the aggregate. It is easy to see that this modification is equivalent 
to letting each lattice site be filled by up  to M particles at the same time. Then c, 
would correspond simply to the number of particles incorporated in the cluster at j, 
and the ‘kernel’ of the cluster would be characterized by the condition c, = M. 
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In this paper we will consider also two rather rarely employed extensions of the 
DLA. In the classical DLA algorithm the probability that a random walker will move 
from site i to its neighbour j is equal to l / n i ,  where nj is the number of the nearest 
neighbours of i. Following Meakin (1987) we may assume more generally that this 
probability is proportional to some previously chosen number k,-see (2.3). Choosing 
k, = 1 we get 01, = l /nj .  Another extension we are going to consider is the assumption 
that when a random walker arrives at a perimeter site j, it joins the cluster with 
probability xn, n e;, and with probability 1 - xn the random walking is started again 
without any change to the cluster. The classical DLA may be obtained when y,. = 1. 

Paterson (1984) noticed that the DLA algorithm might be employed in hydrody- 
namics to predict the behaviour of an inviscid fluid being injected into a porous medium 
previously completely filled with a viscous fluid. Since then this problem has been 
explored and discussed by several authors (Lenormand 1989, Milpry et a1 1987, Frette 
et al 1990, Chen and Wilkinson 1985, Vicsek 1987). For the purpose of this paper the 
most important conclusion is that the patterns obtained by the DLA algorithm for M = I 
resemble those received in the hydrodynamic experiment only in the case of extremely 
random porous medium, whereas in the limit M + m  (‘mean-field limit’, Witten and 
Sander 1983) this algorithm corresponds to (Tang 1985) the Saffman-Taylor problem 
of two incompressible Newtonian fluids, an inviscid one driving a viscous one from 
a thin space confined by two plates (a Hele-Shaw cell). 

Recently, a new approach was developed (Chan et a1 1988) to model a two-fluid 
flow in a porous medium. This formalism incorporates quantitatively the random nature 
of a real porous medium as well as macroscopic equations of hydrodynamics. Namely, 
it is assumed that a porous medium can be regarded as a system of chambers (pores) 
connected by tubes. In contrast to many previous models, the chamber volumes +E 

(local porosities) and the hydrodynamic conductivities (local permeabilities) of the 
tubes k, are random variables (but in this paper we assume that only qbi have random 
nature). The tubes hold a negligible volume of the fluids, but give rise to a hydrodynamic 
drag, wheras the chambers hold virtually all of the fluids, but make negligible contribu- 
tion to the hydrodynamic resistance. A flow of a Newtonian incompressible fluid is 
governed by Darcy’s law (3.4), and by a simple condition of incompressiblitiy, (3.5). 
We shall consider only the case of an inviscid fluid driving an incompressible viscous 
one at constant pressure, which provides us with simple boundary conditions (3.3~2, b). 

In sections 2 and 3 we give more precise definitions of the two models. We also 
derive there some useful equations which we will use in section 4 to show the conditions 
for the equivalence of the models. In section 4 we also present some applications of 
our theorem: the equivalence of the mean-field limit of the DLA and the Saffman-Taylor 
problem, and the correspondence between the DLA noise and the CT entropy. We also 
show how to introduce real-time dependence into the DLA algorithm which would 
correspond to the CT time variable. Finally, section 5 is devoted to the conclusions. 

2. The extended DLA model 

Consider a graph G(Z,  Z‘, A, { k v } ,  {y,}, M), where Z u  Z‘ is the set of its nodes, A 
is the contiguity matrix (A, = 1- i, j E Z U Z’ are connected by a bond and A, = 0 
otherwise), k ,=  k,{>O are real weights assigned to the bonds, M a  1 is an integer 
parameter and for every i E Z yco,.  , , , yiM-,  is a sequence of positive weights assigned 
to i. From the physical point of view, Z corresponds to the system, Z’ is a special set 
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from which random walkers are launched into the system, ( k g }  governs the random 
walk probabilities, and { y j n }  are the probabilities of attaching to the cluster the ( n  + 1)th 
random-walking particle at i E Z. Usually graph G corresponds to a square, hexagonal 
or cubic lattice, the system Z consists of all sites lying within a circle (sphere) with 
an extremely large radius R, and Z' is composed of all sites lying off Z. In this paper, 
however, Z' is a one-element set of nodes, the only element of which is connected to 
all i E Z, that would be connected with Z' in the usual (infinite lattice) approach. This 
assumption does not affect the behaviour of the system, but significantly simplifies the 
considerations. The only element of 2' will be denoted by I or L. 

Let [c(s)]:=,, be a stochastic Markov process defined by the conditional probability 
p ( c ( s ) l c ( s -  I ) ) ,  where s is a 'discrete time' variable and c ( s )  is a function (field) 4 s ) :  
Z 3 i U c i ( s )  E (0 ,  1, . . . , MI.  We interpret c I ( s )  as the number of particles belonging 
to the cluster at site i and at time s (the counter variable). Given c ( s ) ,  we may divide 
Z into three disjoint subsets: the aggregate Z"(s), the free space Z'(s) and the 
perimeter zp(s) :  

ZA(s)= { ;E  z: C j ( S )  = M }  ( 2 . 1 ~ ~ )  

Z'(S)= ( ; E  Z: c , ( s )  = O  and V,== A, = 1 + c,(s) = 0) ( 2 . l b )  

ZP(s)= Z-ZA(s)-ZF(s). ( 2 . l c )  

Given one of these sets, the other two are fully determined. Let also 

where X, denotes the sum over all j linked with I. 

In the DLA model the conditional probability p ( c ( s ) l c ( s - l ) )  is defined in the 
following, descriptive way. Assume that c ( s  - 1) is given. Then we can determine 
ZA(s - l), Z p ( s  - 1) and ZF(s - 1).  Let a particle be put at I E  Z' and let it walk at 
random in accordance with the following rules: 

(i) If the particle is at i€ZF(s-  l ) u Z ' ,  then it moves to any of its neighbours 
j E Z U Z' with probability uq, 

(2.3) 

(ii) If the particle arrives at k E Zp(s - l) ,  it is stopped and attached to the cluster 
with probability -yr.. n = ck( s  - l ) ,  otherwise it is restarted from Z without any change 
to the cluster. 

From this description it follows immediately that the growth can occur only at 
exactly one of the perimeter nodes and that mathematically it is expressed by increasing 
c, by 1 at exactly one node. Thus, denoting this growth node by k, we have 

uz, = k, /  K ,  . 

c,( s) = c,( s - 1) + a,, i E Z  (2.4) 

as the condition for a non-zero value of p ( c ( s ) l c ( s -  1 ) ) .  Henceforth we shall denote 
these non-zero conditional probabilities simply by p , ( k ) ,  remembering that they depend 
not only on k, but on c ( s - 1 )  as well. By definition 

p , ( k )  = yk. *prob (walker arrived at k ) .  (2.5) 

Now let us express p,( k) in terms of the parameters of the model. Again let c ( s  - 1) 
be given and let also p ( N ,  i )  be the probability of finding the random walker at 
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i E 2 U Z' after having performed N random steps. Let also xi = 1 c1 i E ZF(s - 1) U z' 
and xi = 0 otherwise. Then directly from the definition of the random walk process, 

v N + I  v i ~ Z u Z '  P(N, f ) = L ~ p ( N - l , j ) a j j  
i 

p(0 ,  i E Z )  = O  

p ( 0 ,  I E Z') = 1 

(2.6) 

The aim of introducing a is to express the fact that the random walker cannot return 
to the free space ZF(s-  1) after arriving at the perimeter Zp(s -  1). Let 

m 

pi= Z P ( N ,  i). (2.7) 

This quantity is the mean number of times the site i is being visited by a random 
walker on its way to the cluster, and corresponds to the density of mutually independent 
random walkers being launched from Z' at a constant rate and annihilated at the 
perimeter without any influence on the cluster. If k is one of the perimeter nodes, all 
p ( N ,  k )  are mutually independent and so 

(2.8) 

N = O  

pk = prob (walker arrived at k )  kE ZP(s-  1). 

In terms of pi, (2.6) reads 

~ i = Z x , p j k j i l K j  i E Z  ( 2 . 9 ~ )  

PI = X XjPjkj,/  K; + 1 (2.96) 

j 

I E 2'. 
i 

To simplify these equations we locally rescale p :  

P : ' X i ( P i l K i ) ( K L l p J  i E Z U 2'. LE 2'. (2.10) 

p? = 1 p:kj i /K.  ic ZF(s- 1). (2.11) 

Then (2.9n) yields 

; 

In the case of a uniform system, k,=const, (2.11) becomes a discrete-lattice version 
of the Laplace equation Ap* = A p  = 0. In the general case the boundary conditions are 
provided by (2.10) and the definition of xi ,  

p : = o  

p T = l  I E Z ' .  

i E ZA(s - 1) U z p ( s  - 1) 
(2.12) 

The steady flux of random walkers is given by 

qij = (x i~ ia i j  -&pjaj,)lAt (2.13) 

where At denotes the interval between two subsequent injections of the random walkers 
into the system. If 

(2.14) 

(2.15) 
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v , = - x q .  'I' (2.16) 
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Let also V, be the 'divergence' of p :  

i 

Then (2.11) reduces to the natural condition for incompressibility of the steady flux: 

V,,ZF, , - , ,  v. -E 4 . .  = 0. (2.17) 

Equation (2.11) together with its boundary conditions (2.12) allows us to compute pT, 
qv and lastly V; for any i E 2 and without introducing random walkers at all. As one 
can also get 

VL -KL/PL L E Z '  (2.18) 

we can see that K L / p L  and then, via (2.10), all pE, iEZF(s - l )  could be determined 
too. One could also derive 

vk = PxKr/Pr k E ZP(S - 1) (2.19) 

so that pk could be computed at all perimeters nodes as well. Moreover, (2 .5 ) ,  (2.8) 
and (2.19) yield p , ( k ) =  yknVk(pJKL).  As X k p . T ( k ) =  1, we finally get 

j 

p , ( k ) =  7 ' k ~ k v k / ~ p ? ' ; c l ~  k, jEZP(s-1)  (2.20) 
j 

where XJ denotes the sum over all j e Z p ( s  - 1). This equation allows us to define the 
DLA growth process in a new way. Instead of introducing random walkers, we can, 
for a given c(s-I) ,  determine Z"(s-I),  Zp(s - l ) ,  ZF(s - l ) ,  { p : } ,  {q l J  and {VJ 
simply by making use of appropriate definitions and equations. Then all non-zero 
conditional probabilities p ( c ( s ) l c ( s -  I))  are given by (2.20). 

3. The CT model 

In this section we will use the same symbols for the quantities that have their counter- 
parts in the DLA model. 

Consider a network (graph) G(Z Z', A, {/cy}, (y,,,}, M )  of chambers (nodes) 
I E Z U 2 and tubes (bonds) with k,  = k,z > 0 being their hydrodynamic conductivities 
(weights). Each chamber i is assumed to be made of M a 1 subcbamberst io,. . , , i"'-', 
their volumes $:,. . . , 4 Y - I  being random variables with probability densities 
a,, . . . , so that the probability density T, of the whole chamber volume 4, may 
be expressed by 

0 

t The concept of subchambers arises from the fallowing reasoning. If  we simulated the CT model on a 
computer, in each experiment we could generate any chamber volume +, as the sum of'subchamber  volume^. 
+:, chosen in accordance with some simple probability density functions T:, and keep them all in the 
memory. In  this way it could be possible to give direct sense to the statement 'subchamber i has just been 
completely filled with the driving fluid'. Of course, as the only relevant quantities refer 10 whole chambers, 
we could also use a different random-number generator, and the results must remain the same. However, 
theconcept ofsubchambers provesto be a goodtool for dealing with complicated chamber volume probability 
densities n,. 
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We assume that (yjn)-' are the mean values of the subchamber volumes, i.e. ( y , " ) - ' =  
(4:). n = 0 . .  . M - I .  I f  a quantity corresponds to a subchamber and its value may 
differ from the value referring to the whole chamber, it will be distinguished either by 
an overbar (e.g. Tj, f), or by writing explicitly the domain of the index (e.g. T;, ; E  2). 
Z' is a special, one-element set (the outer space) to which a fluid can be pushed from 
the system Z. We also maintain the definition of Ki as well as the notation Xj and XT 
introduced after equations (2.2) and (2.20), respectively. 

The random nature of +j may be taken into account by making many experiments 
with { c $ ~ } ~ , ~  chosen in each experiment in accordance with the probability distributions 
T;, i E Z. In each experiment we may introduce another function V(f, j )  = %( t )  which 
would correspond to the volume occupied by the driven viscous fluid at the time t and 
at the chamber j E Z. Given V(t),  we can divide Z into three disjoint subsets: the 
inviscid phase (the aggregate) ZA( f ) ,  the viscous phase (the free space) Z'(t) and the 
i..ta.fora /+ha ,.Amntn,> 7p/i>. 
,111 C L L Y l b  \ , L . L  p'"'".a'L'., I ,.,. 

zA(t)= {iEZ: x.( t )  =0) 

ZF(t)={iE Z - Z A ( f ) :  V,Au = 1 + j g  ZA(t)}  

ZP(t)  = z -ZA(f)  - Z F ( f ) .  
(3.2) 

Again given one of these subsets, the other two can be easily obtained. 
To describe the rules of flow in the CT model, we introduce another function P 

(pressure). Its values will be denoted by E.( t ) ,  where i E Z U Z' and f E R. This function 
fulfils, by definition, the following conditions: 

i ~ z ~ ( t ) u F ( t ) +  P;( t )  = 1 (3.3~1) 

iEZ'+ P ; ( f )  = o  (3.36) 

(3 .3c)  i E Z'( f )  + P,( f )  = c p,( t )k ; ; /K;  
; 

and so it is completely determined by the state of the aggregate ZA(t) ,  the topology 
of the network G, and by the hydrodynamic conductivities {k , ] .  Equation (3.3a) states 
that the driving fluid is inviscid (no pressure drop along tubes filled with this fluid), 
and that the driving pressure is equal to I .  The next equation states that the pressure 
outside the system is equal to 0. The last of the above equations says that the driven 
fluid is Newtonian and incompressible. To see this let us define a volume flux qu : 

q , ( t ) c  k g ( P i ( t ) - e ( t ) ) / P  i, j E Z u Z' (3.4) 

where p is some positive constant (viscosity of the driven fluid). Equation (3.4) is 

along a tube. Now we can see that ( 3 . 3 ~ )  is equivalent to 
-:--t.. n ---.. 3" 1 -... --tm+;-- +La ..nl..-n R..r - C O  hlnl.,+nnio.r R..:A +-+ha , .-C.~CII.-P A r ~ n  
3,111 p y  Y a b y  >,'a__ ,c,aL,,,E, L l l C  " V L U l l l b  .."A "1 'I I.*W,"111Y., ,,"I" I" ,I.. p ' . C " o " L '  Y1Yp 

V;,z~X 4,(1)=0 (3.5) 
j 

i.e. to the condition of incompressibility of the driven fluid. The speed at which one 
fluid replaces the other, or equivalently dVdf)/dt, is given by 

G(r) =x 4,1(') i E Z u Z'. (3.6) 
i 

Thus, in each experiment with fixed {c$~), if we knew { & ( f ) ] ,  we would be able to find 
out ZA(r) and then {R(f)}-this means that V ( t )  would be in each experiment a 
deterministic process. 
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As assumed before, each chamber consists of M subchambers which are, however, 
purely theoretical objects introduced only to simplify our considerations. To avoid 
misunderstandings we shall denote the set of all subchambers by and divide it into 
.?*(t), zP(t) and zF(t) by replacing V , ( f )  by c.(t) in (3.2). 

As the fluids flow, subsequent subchambers are completely filled up with the driving 
tluid so that the aggregate zA(t) grows. We will assume that for every chamber i none 
of its subchambers i k  can be fillted unless subchambers i ' ,  , . . , I were previously 
completely filled with the driving fluid. However, as for any f there is always a finite 
number of interfacial subchambers and the chamber volumes may be any real positive 
numbers, we may assume that it is impossible for two different subchambers to be 
fully emptied from the driven fluid at the same time, so that for every flow process 
there is a sequence of moments to < f ,  <. . . < I, c: . . . at which successive subchambers 
are completely filled with the driving inviscid fluid. At any ts-, s f < 1, the aggregate 
zA(f) does not change and so for any i, j E  Z the values of Pj(t), q,(f) and $',(t)  are 
constant between f , - l  and I,. This property discretizes the problem in a natural way. 

Having in mind the similarity of patterns observed in the DLA and in a two-phase 
flow through porous media (the so-called viscous fingering phenomenon), we may 
pose the following question: what is the probability that in a sequence of experiments 
an aggregate zA(fs-l) will grow at a subchamber k belonging to the interface z'(f,-,)? 
However, the full description of such a probability should depend on the probability 
densities U:-' of c.(fs-,), i E z .  To see this let us assume that in an experiment the 
state of the system at some t,-, is given by F. ( r s - , ) ,  i ~ z  The subchamber k which 
will be the first to be attached to zA can be easily determined from the condition 
T~ =min{~J ,  iEzP(f , - , ) ,where~ , -  c(f,_,)/$',(f,_,)isthetimeoffillingupthevolume 
c.(ts-,) at the speed $' , ( ts- , ) .  Therefore, in a sequence of experiments, the probability 
that a subchamber k will be the next one completely flooded by the driving fluid equals 
to prob(Th = min{T,}), i E  zp(f,-,), Or 

. k - ,  

p , ( k ) = I o m  u ; - ' ( v h ) ( ? ' I m  v, v, 1 v, v l - ' ( c ) d c ) d v k  

vf(x)  = B-' Io" v : - ' ( x + y .  $',./ V k ) u i - ' ( y )  dy 

(3.7) 

where the product is taken over all iEzP(fs-,) except k If at ts the aggregate grows 
at k E  zp(t,_,), then the new probability distributions ul will be given by 

u : ( x )  = 7rj(X) (3.8) 
for i E zp( f , )  -zp( For i E z'( I ,)  n z'( t s - J  they will read 

(3.9) 

where B is the normalizing factor equal simply to prob(Th < T ~ ) ,  

B =  jam 1- v;-'(x)v;-'(y)dx dy. (3.10) 

Now we can see the main difficulty of the problem: to compute p , ( k )  we must have 
all the functions U ; - ' ,  i ~ L ? ~ ( t ~ _ ~ ) ,  which may depend on all U;-', . . ., u,"= rj ,  j e  
~ A ( r s _ , ) y ~ P ( r 5 _ , )  in a rather complicated way. Moreover, U ;  might depend on the 
whole 'history' of the aggregate. However, there is a special choice of r i  for which 
this obstacle vanishes in probably the most natural way. 

Assume that all vi, i ~ 2 ,  are given by the exponential distributions &,(x), where 

Y v,/ v, 

a exp(-ax) x>o 
x s o  (3.11) 
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and a 
fundamental 'short-memory' property of the exponential distribution 

7( for each i~ 2. If at some moment vy-' = &, then (3.9) and (3.10) yield the 

= v;-l (3.12) 

for any functional form of vf'. As for all subchamhers initially belonging to ZF( to )  
we have I: = 7ii, iterating (3.12) we get 

E = vl-' I . . .  = I i E Z F ( l o ) .  (3.13) 

Now we can conclude that if all 7ii are the exponential distributions (3,11), then p , ( k )  
(see (3.7)) depends only on {wJ, which are the same in each experiment, and on { <), 
which implicitly depend only on the state of the aggregate ZA(ts-,). Thus, with such 
choice of {7ij}, i E 2, p.( k )  depends only on L?A(ts-l) and k. This means that the growth 
of the inviscid phase in a random medium may be considered as a Markov process. 
For the exponential distributions of {vi} ,  (3.13) and (3.7) yield 

p5(k)=7kVki , lL  '$jjq k , j E T P ( f s - l )  (3.14) 

which is the probability that the aggregate ZA( ts- , )  will grow at a perimeter subchamber 
k. In terms of chambers this equation reads 

p , ( k )  = Y k C k V k i , l E  '?;.,$ kjEZP(fr-l)  (3.15) 

which is the probability that, if the aggregate t A ( t S _ , )  is given, the next subchamber 
flooded by the driving fluid belongs to the chamber k. 

i 

j 

4. Equivalence of the models 

Comparing (2.20) and (3.15) we conclude that with the exponential choice of {TJ, 
i E 2, both the DLA and the CT processes are not only Markovian, but have the same 
analytical form for the transition probabilities p , ( k ) .  Comparing equations and 
definitions one immediately arrives at the conclusion that the satisfactory conditions 
for the equivalence of the two models are: 

,.> " 
(1) ~ ~ , = ~ ~ . , w h e r e a - ~ ; . ;  
(ii) the values of y,,, V, and k,  in the CT model should he proportional to their 

counterparts in the DLA model; 
(iii) ( M ) c T =  ( J W D L A  (1 - 8 )CT = (P:)  D L A  ; 
(iv) both systems have the same topology (isomorphous sets Z and the contiguity 

matrices A). 
It is important to notice that in point (ii) we do not require equality, but merely 

proportionality of the appropriate values. This is the consequence of the fact that 
multiplication of all k, or y,. by the same factor would result only in slowing down 
or speeding up the processes, but could not change their conditional probabilities. 
thus, though in the DLA model all %n should be less than or equal to 1 (they are 
interpreted as probabilities), no such restriction applies to the CT model. Moreover, 
nr i, . r r l  D (A- 1 - ..*) 0.- F..ll., A n m r m i n n A  h . r  thn nnrnmptprr n C  thn m n A n l .  - 1 1  thnrn a2 r .  a,," .,. \ Y ,  I p,. , a,r 1Y1.J Y I L I . . . I . L . C Y  Y ,  L . . ' p Y . " . " * L " 1 " .  &..U . I .YYI I I ,  Y.. I..".,.. 

conditions may be written briefly as 

7i; = I" (4.1 ) 

G,,A(Z, Z ' ,  A, {kgl ,  M )  = GcT(Z, Z', A, {kj}, { Y , ~ } ,  M )  (4.2) 
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where ‘=.! indicates isomorphism. The first of the above conditions, however, refers to 
the notion of subchambers, which are auxiliary objects. Physically meaningful quan- 
tities are chamber volume probability densities, which may be easily derived from 
(3.1). We will consider here only two simple cases: 

(i) yio=. . . = = yi, then 

(4.3) 

(4.4) 

where 
M - I  

?“=0,m*n 
A= n Y t m / ( 7 , ” - y , ” )  (4.5) 

are some constants. 
Thus the class of chamber volume probability densities T~ for which there exists 

an equivaient ou-i i i te  modei is quite iarge and this suggests that these two processes 
belong to the same universality class (i.e. their fractal properties are the same) for any 
choice of rr,, i f  Z. 

We will finish this section with a few straightforward applications of the two models 
equivalence. 

4.2. The limit M + m  

Assuming in (4.3) y, = M, we obtain 

lim ~ , ( x ) = S ( x - l ) .  
M-CC 

This means that in this limit the chamber volumes are no longer random numbers-they 
all are equal to 1. If also the system is uniform ( k ,  = k=const), and the graph G 
corresponds to a regular lattice (e.g. square or hexagonal), then the CT model is a 
discrete-lattice approximation of a two-phase Row in a uniform deterministic medium 
(e.g. in a Hele-Shaw cell). But as the CT model is equivalent to the DLA algorithm, we 
conclude that also the ‘mean-field’ limit ( M + m )  of the classical DLA (k , ,  =const, 
y,,, = const, regular lattice) is equivalent to the Saffman-Taylor problem of a two-phase 
flow (an inviscid fluid driving a viscous one) in a Hele-Shaw cell. 

4.2. Noise and entropy 

It is well known (Tang 1985, Nittmann and Stanley 1986) that the parameter M controls 
the noise level in the DLA algorithm. The noise is the biggest for M = 1, and vanishes 
monotonically as M goes to infinity. On the other hand, however, Chan et a1 (1988) 
showed that this is just the exponential chamber volume probability density, for which 
a random medium with a fixed mean pore size has the biggest entropy. Looking at 
(4.3) or (4.4) we immediately conclude that in  the CT model such a chamber volume 
probability density can occur only for M = 1. As M goes to infinity, the randomness 
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(entropy) of a porous medium vanishes monotonically, and so we can conclude that 
there is a natural correspondence between the noise in the DLA model and the 
randomness (entropy) of a porous medium in the CT model. 

4.3. DLA as a real-time process 

It would be interesting to know if the DLA algorithm could be employed to investigate 
time=dependcn! aspects of :he visco.;s fingering pheiioiiiiiia. This pio::em has been 
explored by MBl0y et al (19871, who compared experimental results with computer 
simulations of the DLA in the zero-concentration limit, finding good correspondence 
of the results. They simulated the flow of time by incrementing the real-time variable 
by A t ' =  l/NL each time a new particle was injected into the system, NL being the 
number of the system nodes to which those random walkers could be launched from 

see this we must notice two facts. Firstly, in our approach A t  denotes the mean interval 
in which subsequent particles join the cluster, while Milay et al by A t '  meant the 
mean time between subsequent entering Z by random particles. However, as pr is the 
mean number of times each particle visits Z', A t  = pLAf' .  The other fact we should 
realize is that if all the boundary nodes of Z may be reached from Z' with the same 
probabilities (which was assumed by Milply e t  a / ) ,  then k,, = const( i) and so KLcc N,.. 

Now assume that all yi. = 1, what means that the random walker must be incorpor- 
ated into the aggregate each time it arrives at the perimeter Zp(s - 1) or, on the other 
hand, that the mean volume of each subchamber is the same and equal to 1. Let also 
M and { k 8 }  be the same in the two models. Then in the DLA algorithm it takes 
A t  = pL/ K L  to attach a single particle into the cluster. In the CT model the driving fluid 
is being pushed into the system at the speed VL(t._!)? and on average it should take 
(At)CT= I /  V L ( t x - J  to fill up a single subchamber, which, due to the short-memory 
property of the exponential distribution, should always have the mean unfilled volume 
equaling to l/yjn = 1, even if it has been partially filled with the driving fluid. However, 
as the same equations with the same boundary conditions should always give the same 
results, ( ~ - P ? ) u L A = ( ~ ~ ) c T ,  (-4r)uu=(4s/P)CT and (VL)DLA=(VL/PL)CT, SO that 
using (2.18) we finally write 

7' ihminrlnrv nnrler) In firt thic i e  nn i i i r rs lant  in I? l A \  swh:r-h A + - ~ I Y TA 
I \ - _ "  ..-.-.., ..-- _-,. ..._ I-. I... Y .I ~~-..-.~... .U ,&.AT,, "l..Ul. "Y""Y.-&,L,'XL. I "  

( A ~ ) c T =  I / (  VL)CT= P(PL/KL)uLA = P ( A f ) u L A .  

Thus the DLA may he used, via the CT model, to investigate time-dependent aspects 
of the viscous fingering phenomena, a t  least in the most common case yin = const, 
simply by incrementing the time variable by p / K L  each time a random walker enters 
the system Z. 

5. Conclusions 

We have proved that the extended DLA model is mathematically equivalent to the CT 

any space dimensionality. Employing some concepts presented by the authors of the 
CT model, we completed the proof that the hydrodynamic process described by their 
model is Markovian. Moreover, we were able to generalize our considerations to 
systems with any values of M, { k q l  and {%,I. 

- . > . I  ..ILL ^L ̂ ^^_  -~ n..- ---- P:" .,^, :,4 F,.- -_.. ,"..--I., ... :*I. iuuuei w x n  piupciry LIIVSCLL painrisLc;rs. VYI pivui v a u u  L V I  a u y  LPWCC ~ ~ ~ a y i i ,  w i w  
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The first of these parameters, M, controls the level of the noise in the DLA algorithm 
and, as we showed in section 4, may be related to the randomness of a porous medium 
in the CT model. In contrast to Chan et a1 (1988), we let {/cy} take any value because 
we believe that in the two-phase flow problem the distribution of the local hydrodynamic 
conductivities is at least as important as the probability distribution of the chamber 
volumes (local porosities)-compare results obtained by Meakin (1987), and by 
Nittmann and Stanley (1986). Lastly we have introduced { y,”}  to enlarge the family 
of the chamber volume probability densities ,r:: for which an equivalent DLA-like model 
can be constructed, and to give a firmer basis to the hypothesis that the DLA and the 
CT models belong to the same universality class. 

We managed to consider the case M > 1 by introducing auxiliary objects called 
‘subchambers’ and utilizing the ‘short-memory’ property of the exponential probability 
distribution. Taking the limit M + CO we showed the equivalence of the mean-field 
limit of the DLA and the Saffman-Taylor problem of two-phase flow in a Hele-Sbaw 
cell. 

We also showed that the DLA model may be employed to investigate time-dependent 
aspects of the CT model, at least in the case 7,” = const. The simplest way to achieve 
this is to increment the time variable by I E Z ’ ,  each time the random walker 
is entering Z. 

la the future the equivalence of the two models may be employed to join closer 
those apparently different areas of physics-hydrodynamics in porous media and 
stochastic growth processes. One could for instance try to find out the exact relation 
between the DLA ‘fractal’ exponents and some features of the flow through a porous 
medium. Moreover, the CT model is rather simple and could be easily modified so as 
to take account of gravitational or capillary effects. 

Our work reveals also the fundamental significance of the probability density of 
the pore volumes, and it seems that this aspect of flow through porous media requires 
a closer experimental exploration. 
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